如图所示,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面a相交于点E,G,H,F.求证:E,

2个回答

  • 由于两条平行线确定一个平面,AB∥CD,可知A、B、C和D四点共在同一平面内,记该平面为β,那么直线AB、BC、AD和DC也都在平面β内,这些直线上的点E、F、G和H(四直线与平面α的交点)也随之在平面β内;但E、F、G和H四点又在平面α内,所以此四点必在α和β两平面的交线上,因两平面的交线是一条直线,所以E、F、G和H四点在同一直线上.