若一元二次方程ax 2 +bx+c=0(a≠0)有两个实数根x 1 ,x 2 .

1个回答

  • (1)ax 2+bx+c=0(a≠0)

    ∵a≠0,∴两边同时除以a得:

    二次项系数化为“1”得:x 2+

    b

    a x+

    c

    a =0

    移项得:x 2+

    b

    a x=-

    c

    a

    配方得:x 2+2•x•

    b

    2a + (

    b

    2a ) 2 = (

    b

    2a ) 2 -

    c

    a

    (x+

    b

    2a ) 2 =

    b 2 -4ac

    4 a 2

    ∵a≠0,∴4a 2>0

    当b 2-4ac≥0时,直接开平方得:

    x+

    b

    2a =

    ±

    b 2 -4ac

    2a

    ∴x=

    -b±

    b 2 -4ac

    2a ,

    ∴x 1=

    -b+

    b 2 -4ac

    2a ,x 2=

    -b-

    b 2 -4ac

    2a ;

    (2)对于方程:ax 2+bx+c=0(a≠0,且a,b,c是常数),

    当△≥0时,利用求根公式,得

    x 1=

    -b

    2a +

    b 2 -4ac

    2a ,x 2=

    -b

    2a -

    b 2 -4ac

    2a .

    ∵x 1+x 2=

    -b

    2a +

    b 2 -4ac

    2a +

    -b

    2a -

    b 2 -4ac

    2a =-

    b

    a ,

    x 1x 2=(

    -b

    2a +

    b 2 -4ac

    2a )•(

    -b

    2a -

    b 2 -4ac

    2a )=(

    -b

    2a ) 2-(

    b 2 -4ac

    2a ) 2=

    c

    a .

    ∴x 1+x 2=-

    b

    a ,x 1x 2=

    c

    a 是正确的;

    (3)方程

    1

    2 x 2 -7x+3=0 中,

    ∵a=

    1

    2 ,b=-7,c=3,

    ∴b 2-4ac=49-6=43>0,

    则x 1+x 2=-

    b

    a =-

    -7

    1

    2 =14,x 1x 2=

    c

    a =

    3

    1

    2 =6,

    ①x 1 2+x 2 2=(x 1+x 2 2-2x 1x 2=14 2-2×6=196-12=184;

    1

    x 21 +

    1

    x 22 =

    x 1 2 + x 2 2

    ( x 1 x 2 ) 2 =

    184

    14 2 =

    184

    196 =

    46

    49 .