(1)ax 2+bx+c=0(a≠0)
∵a≠0,∴两边同时除以a得:
二次项系数化为“1”得:x 2+
b
a x+
c
a =0
移项得:x 2+
b
a x=-
c
a
配方得:x 2+2•x•
b
2a + (
b
2a ) 2 = (
b
2a ) 2 -
c
a
(x+
b
2a ) 2 =
b 2 -4ac
4 a 2
∵a≠0,∴4a 2>0
当b 2-4ac≥0时,直接开平方得:
x+
b
2a =
±
b 2 -4ac
2a
∴x=
-b±
b 2 -4ac
2a ,
∴x 1=
-b+
b 2 -4ac
2a ,x 2=
-b-
b 2 -4ac
2a ;
(2)对于方程:ax 2+bx+c=0(a≠0,且a,b,c是常数),
当△≥0时,利用求根公式,得
x 1=
-b
2a +
b 2 -4ac
2a ,x 2=
-b
2a -
b 2 -4ac
2a .
∵x 1+x 2=
-b
2a +
b 2 -4ac
2a +
-b
2a -
b 2 -4ac
2a =-
b
a ,
x 1x 2=(
-b
2a +
b 2 -4ac
2a )•(
-b
2a -
b 2 -4ac
2a )=(
-b
2a ) 2-(
b 2 -4ac
2a ) 2=
c
a .
∴x 1+x 2=-
b
a ,x 1x 2=
c
a 是正确的;
(3)方程
1
2 x 2 -7x+3=0 中,
∵a=
1
2 ,b=-7,c=3,
∴b 2-4ac=49-6=43>0,
则x 1+x 2=-
b
a =-
-7
1
2 =14,x 1x 2=
c
a =
3
1
2 =6,
①x 1 2+x 2 2=(x 1+x 2) 2-2x 1x 2=14 2-2×6=196-12=184;
②
1
x 21 +
1
x 22 =
x 1 2 + x 2 2
( x 1 x 2 ) 2 =
184
14 2 =
184
196 =
46
49 .