解题思路:(Ⅰ)f'(x)=[ax2+(2a+b)x+b+c]ex.令g(x)=ax2+(2a+b)x+b+c,简化运算;
(Ⅱ)由f(x)的极小值为-1确定参数值,通过导数求极大值.
(Ⅰ)f'(x)=(2ax+b)ex+(ax2+bx+c)ex=[ax2+(2a+b)x+b+c]ex.
令g(x)=ax2+(2a+b)x+b+c,
∵ex>0,
∴y=f'(x)的零点就是g(x)=ax2+(2a+b)x+b+c的零点,且f'(x)与g(x)符号相同.
又∵a>0,
∴当x<-3,或x>0时,g(x)>0,即f'(x)>0,
当-3<x<0时,g(x)<0,即f'(x)<0,
∴f(x)的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0).
(Ⅱ)由(Ⅰ)知,x=0是f(x)的极小值点,
所以有
c=−1
b+c=0
9a−3(2a+b)+b+c=0
解得a=1,b=1,c=-1.
所以函数的解析式为f(x)=(x2+x-1)ex.
又由(Ⅰ)知,f(x)的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0).
所以,函数f(x)的极大值为f(−3)=(9−3−1)e−3=
5
e3.
点评:
本题考点: 利用导数研究函数的极值;导数的运算;利用导数研究函数的单调性.
考点点评: 本题考查了导数的综合应用,属于中档题.