若数列{An}单调增,数列{Bn}单调减,且{Bn-An}的极限是0,证明{An}、{Bn}的极限存在,好像是用闭区间套

1个回答

  • 对于数列,一般不涉及区间,这里n=1,2,3,...,趋向无穷大

    本题可用反证法证明:

    数列{An}单调增,表示A1

    B2>...>Bn.由此不难知数列{Bn-An}单调减,该数列通项为Bn-An.

    假设数列{An}无极限,因单调增,则An→+∞,记为limAn=+∞(n→+∞);同时假设数列{Bn}有极限,令limBn=p(n→+∞).于是有lim(Bn-An)=limBn-limAn=p-(+∞)= -∞(n→+∞),即数列{Bn-An}无极限,这与题设lim(Bn-An)=0矛盾.

    假设数列{An}有极限,令limAn=q(n→+∞);同时假设数列{Bn}无极限,因单调减,则Bn→-∞,记为limBn=-∞(n→+∞).同上理可得lim(Bn-An)=-∞(n→+∞),显然也与题设lim(Bn-An)=0矛盾.

    假设数列{An}、{Bn}都无极限,则limAn=+∞(n→+∞),limBn=-∞(n→+∞).同上理可得lim(Bn-An)=-∞(n→+∞),也与题设lim(Bn-An)=0矛盾.

    综上,假设均不成立,所以数列{An}、{Bn}的极限存在.