Sn=2n^2
S(n-1)=2(n-1)^2
an=Sn-S(n-1)
=2n^2-2(n-1)^2
=2(2n-1)
=4n-2
b1=a1=4-2=2
b2=b1/(a2-a1)
=2/4=1/2
q=b2/b1=1/4
bn=b1q^(n-1)
=2*(1/4)^(n-1)
=2*(1/2)^(2n-2)
=(1/2)^(2n-3)
Sn=2n^2
S(n-1)=2(n-1)^2
an=Sn-S(n-1)
=2n^2-2(n-1)^2
=2(2n-1)
=4n-2
b1=a1=4-2=2
b2=b1/(a2-a1)
=2/4=1/2
q=b2/b1=1/4
bn=b1q^(n-1)
=2*(1/4)^(n-1)
=2*(1/2)^(2n-2)
=(1/2)^(2n-3)