I(a,b)=∫[0,1] [f(x)-(a+bx)]^2 dx;
Ia(a,b)=-2∫[0,1] [f(x)-(a+bx)] dx=0,
Ib(a,b)=-2∫[0,1] [f(x)-(a+bx)]x dx=0;
2a+b=2∫[0,1] f(x)dx,
3a+2b=6∫[0,1] xf(x)dx;
a=4∫[0,1] f(x)dx-6∫[0,1]x f(x)dx,
b=-6∫[0,1] f(x)dx+12∫[0,1] xf(x)dx.
I(a,b)=∫[0,1] [f(x)-(a+bx)]^2 dx;
Ia(a,b)=-2∫[0,1] [f(x)-(a+bx)] dx=0,
Ib(a,b)=-2∫[0,1] [f(x)-(a+bx)]x dx=0;
2a+b=2∫[0,1] f(x)dx,
3a+2b=6∫[0,1] xf(x)dx;
a=4∫[0,1] f(x)dx-6∫[0,1]x f(x)dx,
b=-6∫[0,1] f(x)dx+12∫[0,1] xf(x)dx.