(1)令x=y=1得f(1)=f(1)-f(1)=0
(2)函数y=f(x)在(0,+∞)上单调递增.证明如下:
设0<x1<x2,则(x2)/(x1)>1.∵当X>1时,f(x)>0.∴f[(x2)/(x1)])>0.
又对于一切X>0,y>0,都有F(y分之X)=f(x)-f(y)
∴f[(x2)/(x1)])=f(x2)-f(x1)>0
∴f(x2)>f(x1)
∴函数y=f(x)在(0,+∞)上单调递增.
(1)令x=y=1得f(1)=f(1)-f(1)=0
(2)函数y=f(x)在(0,+∞)上单调递增.证明如下:
设0<x1<x2,则(x2)/(x1)>1.∵当X>1时,f(x)>0.∴f[(x2)/(x1)])>0.
又对于一切X>0,y>0,都有F(y分之X)=f(x)-f(y)
∴f[(x2)/(x1)])=f(x2)-f(x1)>0
∴f(x2)>f(x1)
∴函数y=f(x)在(0,+∞)上单调递增.