a^2+b^2+c^2=ab+ac+bc
两边同乘以2
2a^2+2b^2+2c^2=2ab+2ac+2bc
整理得
(a^2+b^2-2ab)+(b^2+c^2-2bc)+(a^2+c^2-2ac)=0
(a-b)^2+(b-c)^2+(a-c)^2=0
故
(a-b)^2=0
(b-c)^2=0
(a-c)^2=0
故
a-b=0
b-c=0
a-c=0
故
a=b=c
a^2+b^2+c^2=ab+ac+bc
两边同乘以2
2a^2+2b^2+2c^2=2ab+2ac+2bc
整理得
(a^2+b^2-2ab)+(b^2+c^2-2bc)+(a^2+c^2-2ac)=0
(a-b)^2+(b-c)^2+(a-c)^2=0
故
(a-b)^2=0
(b-c)^2=0
(a-c)^2=0
故
a-b=0
b-c=0
a-c=0
故
a=b=c