证明:
(c-a)^2-4(a-b)(b-c)=0
(a-c)^2-4(a-b)(b-c)=0
(a-b+b-c)^2-4(a-b)(b-c)=0
(a-b)^2+(b-c)^2+2(a-b)(b-c)-4(a-b)(b-c)=0
(a-b)^2+(b-c)^2-2(a-b)(b-c)=0
[(a-b)-(b-c)]^2=0
(a-2b+c)^2=0
a-2b+c=0
a+c=2b
b-c=a-b
a,b,c成等差数列.
证明:
(c-a)^2-4(a-b)(b-c)=0
(a-c)^2-4(a-b)(b-c)=0
(a-b+b-c)^2-4(a-b)(b-c)=0
(a-b)^2+(b-c)^2+2(a-b)(b-c)-4(a-b)(b-c)=0
(a-b)^2+(b-c)^2-2(a-b)(b-c)=0
[(a-b)-(b-c)]^2=0
(a-2b+c)^2=0
a-2b+c=0
a+c=2b
b-c=a-b
a,b,c成等差数列.