y=4的(x-0.5)次方-a×2的x次方+a的平方/2+1
=4^x*4^(-0.5)-a*2^x+a^2/2+1
=2^2x/2-a*2^x+a^2/2+1
当0≤x≤2时
1≤x≤2^2=4
设2^x=t 2^2x=t^2
y=2^2x/2-a*2^x+a^2/2+1
=t^2/2-a*t+a^2/2+1
=1/2(t^2-2at+a^2)+1
=1/2(t-a)^2+1
当a4时,
t=4函数确定最小值,即x=2 ymax=9-4a+a^2/2
t=1函数取得最大值,即x=0 ymin=3/2-a+a^2/2