设a/sinA=b/sinB=c/sinC=k
则有a=sinA*k,b=sinB*k,c=sinC*k
∴(a+b)/(sinA+sinB)=(sinA*k+sinB*k)/(sinA+sinB)=k=a/sinA=b/sinB=c/sinC
∴(a+b+c)/(sinA+sinB+sinC)=(sinA*k+sinB*k+sinC*k)/(sinA+sinB+sinC)=k=a/sinA=b/sinB=c/sinC
设a/sinA=b/sinB=c/sinC=k
则有a=sinA*k,b=sinB*k,c=sinC*k
∴(a+b)/(sinA+sinB)=(sinA*k+sinB*k)/(sinA+sinB)=k=a/sinA=b/sinB=c/sinC
∴(a+b+c)/(sinA+sinB+sinC)=(sinA*k+sinB*k+sinC*k)/(sinA+sinB+sinC)=k=a/sinA=b/sinB=c/sinC