解题思路:先根据题意设出这四个数,进而根据前三个数和为19列出方程求得d,则四个数可得.
依题意可设这四个数分别为:
(4−d)2
4,4-d,4,4+d,则由前三个数和为19可列方程得,
(4−d)2
4+4−d+4=19,整理得,
d2-12d+28=0,解得d=-2或d=14.
∴这四个数分别为:25,-10,4,18或9,6,4,2.
点评:
本题考点: 等差数列的性质;等比数列的性质.
考点点评: 本题主要考查了等差数列的性质和等比数列的性质.解题的关键是设出这四个数.
解题思路:先根据题意设出这四个数,进而根据前三个数和为19列出方程求得d,则四个数可得.
依题意可设这四个数分别为:
(4−d)2
4,4-d,4,4+d,则由前三个数和为19可列方程得,
(4−d)2
4+4−d+4=19,整理得,
d2-12d+28=0,解得d=-2或d=14.
∴这四个数分别为:25,-10,4,18或9,6,4,2.
点评:
本题考点: 等差数列的性质;等比数列的性质.
考点点评: 本题主要考查了等差数列的性质和等比数列的性质.解题的关键是设出这四个数.