由方差的计算公式可得:S 1 2=
1
n [(x 1-
.
x ) 2+(x 2-
.
x ) 2+…+(x n-
.
x ) 2]
=
1
n [x 1 2+x 2 2+…+x n 2-2(x 1+x 2+…+x n)•
.
x +n
.
x n 2
]=
1
n [x 1 2+x 2 2+…+x n 2-2n
.
x n 2+n
.
x n 2]
=
1
n [x 1 2+x 2 2+…+x n 2]-
.
x 1 2
=
1
5 (x 1 2+x 2 2+x 3 2+x 4 2+x 5 2-20),
可得平均数
.
x 1=2.
对于数据x 1+2,x 2+2,x 3+2,x 4+2,x 5+2,有
.
x 2=2+2=4,
其方差S 2 2=
1
n [(x 1-
.
x ) 2+(x 2-
.
x ) 2+…+(x n-
.
x ) 2]=S 1 2.
故选B.