设等比数列的公比是q,则有a3=a1q^2,a4=a1q^3,a5=a1q^4
2a4,a3,4a5成等比数列,则有a3^2=2a4*4a5
(a1q^2)^2=8a1q^3*a1q^4=8a1^2q^7
q^3=1/8
q=1/2.
a3=2a2^2
a1q^2=2(a1q)^2=2a1^2q^2
得到a1=1/2.
故有an=a1q^(n-1)=(1/2)^n.
设等比数列的公比是q,则有a3=a1q^2,a4=a1q^3,a5=a1q^4
2a4,a3,4a5成等比数列,则有a3^2=2a4*4a5
(a1q^2)^2=8a1q^3*a1q^4=8a1^2q^7
q^3=1/8
q=1/2.
a3=2a2^2
a1q^2=2(a1q)^2=2a1^2q^2
得到a1=1/2.
故有an=a1q^(n-1)=(1/2)^n.