1)联立y=cos²α,y=1+1/2sin2α,消去y有:
cos²α=1+1/2sin2α
(1+cos2α)/2=1+1/2sin2α
1+cos2α=2+sin2α
cos2α-sin2α=1
cos2αcosπ/4-sin2αsinπ/4=√2/2
cos(2α+π/4)=√2/2
又α∈[0,π/4],2α+π/4∈[π/4,3π/4]
∴2α+π/4=π/4
α=0
2)
f(x)=cos²x=(1+cos2x)/2
y=cosx的对称轴为:y=kπ,k∈Z,
∴f(x)的对称轴为:2x=kπ,x=kπ/2,k∈Z
g(2x)=g(kπ)=1+1/2sin2kπ=1
3)
h(x)=f(x)+g(x)=cos²x+1/2sin2x=(1+cos2x)/2 +1/2sin2x
=(cos2x+sin2x)/2 +1/2
=(sinπ/4cos2x+cosπ/4sin2x)√2/2+1/2
=(√2/2)sin(2x+π/4)+1/2
又x∈[0,π/4],2x+π/4∈[0,3π/4],
∴sin(2x+π/4)∈[√2/2,1]
∴ √2/2 *√2/2+ 1/2≤h(x)≤√2/2*1 +1/2
h(x)的值域为:[1,(√2+1)/2]