解题思路:由题意可得出CD=CE、CA=CB,继而可证明△BEC≌△ADC,得出∠CAD=∠CBE,然后根据∠CAD+∠CDA=90°,可得出∠CBE+∠BDF=90°,继而可证明出结论.
证明:在△BEC和△ADC中,
∵
CE=CD
∠BCE=∠ACD
BC=AC,
∴△BEC≌△ADC,
∴∠CAD=∠CBE,
又∵∠CAD+∠CDA=90°,∠CDA=∠BDF,
∴∠CBE+∠BDF=90°,即可得出∠BFA=90°,
即可得出AF⊥BE.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 此题考查了全等三角形的判定与性质,解答本题的关键是证明△BEC≌△ADC,得出∠CAD=∠CBE,要求我们熟练掌握三角形全等的判定.