有,都有Sin2A=sin(A+A)=sinAcosA+cosAsinA=2SinACosA
cos2A=cos(A+A)=cosAcosA-sinAsinA=CosA^2-SinA^2
tan2A=tan(A+A)=(tanA+tanA)/(1-tanA*tanA)=2tanA/(1-tanA^2)
根据三角函数的诱导公式的两角和差公式
三倍角公式的证明
思路:三部曲:先3x分解成2x+x,用和角公式展开;再用倍角公式统一成单角x;最后化简成一种函数,便于记忆和使用.
●三倍角的正弦公式
sin3x=3sinx-4sin^3 x
证明:
sin3x
=sin(2x+x) (分解成2x+x)
=sin2xcosx+cos2xsinx(和角正弦公式展开)
=2sinxcosxcosx+(1-2sin^2 x)sinx(用倍角余弦公式统一成单角x)
=2sinx(1-sin^2 x)+ (1-2sin^2 x)sinx(化简成一种函数)
=3sinx-4sin^3 x
●三倍角的余弦公式
cos3x=4cos^3x-3cos x
证明:
cos3x
=cos(2x+x) (分解成2x+x)
=cos2xcosx-sin2xsinx(和角余弦公式展开)
=(2cos^2 x-1)cosx-2sinxcosxsinx(用倍角余弦公式统一成单角x)
=(2cos^2 x-1)cosx-2cosx(1-cos^2 x)(化简成一种函数)
=4cos^3 x-3cosx
●三倍角的正切公式
tan3x=(3t-t^3)/(1-3t^2), 其中t=tanx.
证明:
令t= tanx, tan2x=2t/(1-t^2)
tan3x=tan(2x+x) (分解成2x+x)
=(tan2x+tanx)/(1-tan2x tanx) (和角正切公式展开)
=[2t/(1-t^2)+t]/[1-2t/(1-t^2)•t] (用倍角正切公式统一成单角x)
=(3t-t^3)/(1-3t^2), 其中t=tanx.(化简)
应用举例
求证:tan3x=tan(60+x)tan(60-x)tanx
证明:令t= tanx
tan(60+x)=(√3+t)/(1-√3t)
tan(60-x) =(√3-t)/(1+√3t)
tan(60+x)tan(60-x)tanx
=(3-t^2)t/(1-3t^2)
=tan3x(三倍角正切公式)