设函数f(x)在点x0处可导,求lim(h→0)(f(x0+h)-f(x0-h))/2h的值
1个回答
[f(x0+h)-f(x0-h)]/2h=[f(x0+h)-f(x0-h)]/[(x0+h)-(x0-h)]
所以lim(h→0)(f(x0+h)-f(x0-h))/2h=f'(x0)
相关问题
设函数f(x)在点x0处可导,求lim(h→0)(f(x0+h)-f(x0-h))/2h的值
设函数f(x)在点x0处可导,求lim(h→0)(f(x0+h)-f(x0-h))/2h的值
设函数f(x)在x=x0处可导,则lim(h>0)[f(x0)-f(x0-2h)]/h
f(x)在x_0处可导,求lim h→0 f(x_0+h)-f(x_0-h)/5h 的值
f(x)在X0处二阶可导,证lim(h->0)[ f(x-h0)+f(x0+h)-2f(x0)]/h^2=f``(x0)
设函数f(x)在x=x0处可导,则limh→0f(x0+h)−f(x0)h( )
设 函数 f(x)在x=2处可导,且f(2)的导数=1求: lim f(2+h)—f(2—h)/2h h→0
f(x)在x处二阶可导,求lim{[f(x+h)-2f(x)+f(x-h)]/h^2},h趋向于0
高数求导问题设f(0)=0,lim(h→0)[f(2h)-f(h)]/h存在,不能确定f(x)在x=0处可导但是我的推理
函数y=f(x)在x=x0处可导,则limh→0f(x0−h)−f(x0+h)h=( )