设等差数列{an}的前n项和为S,Sn=[(an+1)/2]的完全平方{n属于N+),若bn=(-1)的n次方乘以Sn,

2个回答

  • 问题1

    由Sn=((an+1)/2)^2 知

    an=2n-1

    Sn=n^2

    Tn=-1+2^2-3^2……

    当n为偶时:

    Tn=-1+2^2-3^2……+n^2 =(n+1)(2n-1)

    当n为奇数时:

    Tn=-1+2^2-3^2……-n^2 =-(n+1)(2n-1)

    所以Tn=(n+1)(2n-1)*(-1)^n

    问题2:S4=S8/3

    又S(1-4),S(4-8),S(8-12)

    是等差数列

    所以S8/S16=(1+2)/(1+2+3)=1/2

    问题3:

    S1=PA1

    所以a1=0

    p=1/2

    =>(n-2)an=(n-1)a(n-1)

    =>an=K(n-1)

    a(n-1)=K(n-2)

    =>{An}是等差数列

    问题4:

    An+1+An-1=2(An+1)

    =>A(n+1)-An=An-A(n-1)+2

    =>[A(n+1)-An]-[An-A(n-1)]=2

    =>[An+1-An]为等差数列

    =>[An+1-An]=2n

    =>S[An+1-An]=n(n+1)=An+1-A1

    =>An=n(n-1)

    =>Sn=1^2+2^2+3^2+.+n^2-1-2-3-4-.-n

    =n(n+1)(2n+1)/6-n(n+1)/2

    =(n-1)n(n+1)/3