问题1
由Sn=((an+1)/2)^2 知
an=2n-1
Sn=n^2
Tn=-1+2^2-3^2……
当n为偶时:
Tn=-1+2^2-3^2……+n^2 =(n+1)(2n-1)
当n为奇数时:
Tn=-1+2^2-3^2……-n^2 =-(n+1)(2n-1)
所以Tn=(n+1)(2n-1)*(-1)^n
问题2:S4=S8/3
又S(1-4),S(4-8),S(8-12)
是等差数列
所以S8/S16=(1+2)/(1+2+3)=1/2
问题3:
S1=PA1
所以a1=0
p=1/2
=>(n-2)an=(n-1)a(n-1)
=>an=K(n-1)
a(n-1)=K(n-2)
=>{An}是等差数列
问题4:
An+1+An-1=2(An+1)
=>A(n+1)-An=An-A(n-1)+2
=>[A(n+1)-An]-[An-A(n-1)]=2
=>[An+1-An]为等差数列
=>[An+1-An]=2n
=>S[An+1-An]=n(n+1)=An+1-A1
=>An=n(n-1)
=>Sn=1^2+2^2+3^2+.+n^2-1-2-3-4-.-n
=n(n+1)(2n+1)/6-n(n+1)/2
=(n-1)n(n+1)/3