1.
向量a=(sinc,cosc-2sinc) b=(1,2)
向量a//b,则向量a,b的对应坐标成比例.
所以sinc/1=( cosc-2sinc)/2,
即cosc-2sinc=2sinc,cosc=4sinc,
∴tanc=1/4.
2.
若|a|=|b|,
则sin²c+(cosc-2sinc)²=1²+2²,
sin²c+ cos²c-4 cosc sinc+4sin²c=5,
1-4 cosc sinc+4sin²c=5,
-4-4 cosc sinc+4sin²c=0,
-4 cosc sinc+4(sin²c-1)=0,
-4 cosc sinc-4 cos²c=0,
-4 cosc(sinc +cosc)=0,
Cosc=0或 sinc +cosc=0,
因为0