郭敦顒回答:
用尝试—逐步逼近法在解实际较复杂应用方程方面很有效,本人在实际工作中常用此法,也用此法解答了不少网友所提难题.现仍用此法求解所给方程——
∵58.5 Sin[(X-20)/2]=10 SinX Cos20
∴58.5 Sin[(X-20)/2]=10 SinX ×0.939683
∴SinX=6.22544 Sin[(X-20)/2],
设X=29°,则SinX=0.48481,
6.22544 Sin[(X-20)/2]= 6.22544×Sin4.5°=6.22544×0.0784591=0.48844
误差=0.48844-0.48481=0.00363,
相对误差=0.00363/048481×100%=0.75%.
又设X=28.9°,则SinX=0.48328,
6.22544 Sin[(X-20)/2]= 6.22544×Sin4.45°=6.22544×0.077589=0.48303
误差=0.48303-0.48328=-0.00025,
相对误差=-0.00025/048328×100%=-0.052%.
又设X=28.91°,则SinX=0.48344,
6.22544 Sin[(X-20)/2]= 6.22544×Sin4.455°=6.22544×0.077676=0.48356
误差=0.48356-0.48344=0.00011,
相对误差=0.00011/048344×100%=0.023%.
又设X=28.907°,则SinX=0.48339,
6.22544 Sin[(X-20)/2]= 6.22544×Sin4.4535°=6.22544×0.07765=0.48341
误差=0.48341-0.48339=0.00002,
相对误差=0.00002/048344×100%=0.0004%.
又设X=28.9068°,则SinX=0.48339,
6.22544 Sin[(X-20)/2]= 6.22544×Sin4.455°=6.22544×0.077648=0.48339
误差=0.48339-0.48339=0
∴X=28.9068°.