2,3,4,项系数分别为:
C(n,1),C(n,2),C(n,3)
故有:C(n,1)+C(n,3)=2C(n,2)
即n+n(n-1)(n-2)/6=2n(n-1)/2
即1+(n-1)(n-2)/6=n-1
n^2-3n+2=6n-12
n^2-9n+14=0
(n-2)(n-7)=0
因为n>2,否则没有第4项
所以n=7
2,3,4,项系数分别为:
C(n,1),C(n,2),C(n,3)
故有:C(n,1)+C(n,3)=2C(n,2)
即n+n(n-1)(n-2)/6=2n(n-1)/2
即1+(n-1)(n-2)/6=n-1
n^2-3n+2=6n-12
n^2-9n+14=0
(n-2)(n-7)=0
因为n>2,否则没有第4项
所以n=7