证明:∵AB=AC
∴△ABC是等腰三角形
又∵AD是BC边上的高
∴BD=CD
∵AH=2BD
∴AH=2BD=BD+CD=BC
∵∠ACB+∠CAD=90° (互余)
∠AHE+∠CAD=90°(同上原因)
∴∠ACB=∠AHE
∴在Rt△AHE和Rt△BCE中
(括号)AH=BC ,∠ACB=∠AHE
∴Rt△AHE≌Rt△BCE(HL)
∴AE=BE
证明:∵AB=AC
∴△ABC是等腰三角形
又∵AD是BC边上的高
∴BD=CD
∵AH=2BD
∴AH=2BD=BD+CD=BC
∵∠ACB+∠CAD=90° (互余)
∠AHE+∠CAD=90°(同上原因)
∴∠ACB=∠AHE
∴在Rt△AHE和Rt△BCE中
(括号)AH=BC ,∠ACB=∠AHE
∴Rt△AHE≌Rt△BCE(HL)
∴AE=BE