( I)设a n=a 1+(n-1)d,由题意得2a 1+4d=10,a 1+4d=9,a 1=1,d=2,
所以a n=2n-1, S n =n a 1 +
n(n-1)
2 d= n 2 .…(4分)
( II)b 1=a 1=1,b n+1=b n+a n=b n+2n-1,
所以b 2=b 1+1,b 3=b 2+3=b 1+1+3,…
b n = b 1 +1+2+…+(2n-3)=1+(n-1 ) 2 = n 2 -2n+2 (n≥2),
又n=1时n 2-2n+2=1=a 1,
所以数列{b n}的通项 b n = n 2 -2n+2 ;…(9分)
( III) c n =
2
a n • a n+1 =
2
(2n-1)(2n+1) =
1
2n-1 -
1
2n+1
∴ T n = c 1 + c 2 +…+ c n =(
1
1 -
1
3 )+(
1
3 -
1
5 )+…+(
1
2n-1 -
1
2n+1 )
= 1-
1
2n+1 =
2n
2n+1 . …(14分)