设OA=X,OB=Y
OA+8OB=X+8Y>=2√(X*8Y) 当 X=8Y 时有最小值2√(X*8Y).
连接D(0,1),C(8,0).得两直角边为1,8的三角形,其斜边长√65,其斜边上的高OE=8/√65,
作该圆切线平行于BD,切点P.切线与X轴和Y轴分别交于A,B两点.有
OB/OD=OA/OC=OP/OE
Y/1=X/8=1/(8/√65),X=√65,Y=√65/8
OA+8OB=X+8Y>=2√(X*8Y)=2√65
OA+8OB的最小值是_2√65
设OA=X,OB=Y
OA+8OB=X+8Y>=2√(X*8Y) 当 X=8Y 时有最小值2√(X*8Y).
连接D(0,1),C(8,0).得两直角边为1,8的三角形,其斜边长√65,其斜边上的高OE=8/√65,
作该圆切线平行于BD,切点P.切线与X轴和Y轴分别交于A,B两点.有
OB/OD=OA/OC=OP/OE
Y/1=X/8=1/(8/√65),X=√65,Y=√65/8
OA+8OB=X+8Y>=2√(X*8Y)=2√65
OA+8OB的最小值是_2√65