(1)∵在△ABC中,b2=a2+c2-2accosB,
∴b2-a2-c2=-2accosB,同理可得c2-a2-b2=-2abcosC
∵sinC/(2sinA−sinC)=(b2−a2−c2)/(c2−a2−b2)
∴sinC/(2sinA−sinC)=(−2accosB)/(−2abcosC)=ccosB/bcosC=sinCcosB/sinBcosC ,
∵sinC≠0,可得sinBcosC=2sinAcosB-sinCcosB,
∴2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,
∵sinA≠0,∴等式两边约去sinA,可得cosB=1/2 ,
∵0<B<π,∴角B的大小π/3