1/(a1*a2)+1/(a2*a3)+1/(a3*a4)……+1/(an*an+1)=1/(a2-a1)*(1/a1-1/a2)+……+1/(an-an+1)*(1/an-1/an+1)=1/d(1/a1-1/a2+1/a2-1/a3+……+1/an-1/an+1)=(1/d)(1/a1-1/an+1)
等差数列(an)的公差为d>0,a1>0,证明1/(a1*a2)+1/(a2*a3)+1/(a3*a4)……+1/(an
4个回答
相关问题
-
若{an}为公差为d的等差数列.d不等于0.求1/a1+1/a2+1/a3……+1/an的和.
-
等差数列{an},a7-2a4=-1,且a3=0,则公差d=( )
-
己知{an}为等差数列,且a7-2a4=-1,a3=0,则公差d=______.2、已知Sn=1/3(an-1),
-
已知数列{an}为首项a1≠0,公差为d≠0的等差数列,求Sn=[1a1a2+1a2a3+…+1anan+1
-
an是首项为3,公差,公差为2的等差数列,则lim(1/a1a2+1/a2a3+……+1/a(n-1)an)=
-
由公差为d的等差数列{an}依次相邻两项之和:a1+a2,a2+a3,a3+a4,a4+a5,...,an+(an+1)
-
若等差数列a1,a2,a3,...,an,...的公差为d,则数列a1,a4,a7,...,a3n-2,...公差为
-
已知数列an为首项a1≠0,公差为d≠0的等差数列,求Sn=1/a1a2+1/a2a3+……+1/ana(n+1)
-
已知数列an为首项a1≠0,公差为d≠0的等差数列,求Sn=1/a1a2+1/a2a3+……+1/ana(n-1)
-
已知数列{an}为等差数列,且a9-2a5=-1,a3=0,则公差d=-[1/2]-[1/2].