证明:作MC⊥AC于点C,交AF的延长线于点M.
可证∠MAC=∠DBA,再由AB=CA,∠BAD=∠ACM=90°证△ABD≌△CAM得∠ADB=
∠M,AD=CM;然后由CF=CF,∠MCF=∠DCF=45°,CM=AD=CD,证△CDF≌△CMF得,
∠M= ∠CDF,所以∠ADB=∠CDF.
证明:作MC⊥AC于点C,交AF的延长线于点M.
可证∠MAC=∠DBA,再由AB=CA,∠BAD=∠ACM=90°证△ABD≌△CAM得∠ADB=
∠M,AD=CM;然后由CF=CF,∠MCF=∠DCF=45°,CM=AD=CD,证△CDF≌△CMF得,
∠M= ∠CDF,所以∠ADB=∠CDF.