1.
DQ=PQ=√2,DP=2
所以DQ^2+PQ^2=DP^2
所以DQ⊥PQ
CQ=√3,PQ=√2,PC=√5
所以CQ^2+PQ^2=CP^2
所以CQ⊥PQ
所以PQ⊥平面DCQ
所以平面PQC⊥平面DCQ
2.
作CF平行于BQ交DP于F
cosα=[PC^2+CF^2-FP^2]/[2CF*PC]
=(5+2-1)/(2√10)
=3/√10
sinα=√10/10
3.
几何体是两个棱锥的和
1.
DQ=PQ=√2,DP=2
所以DQ^2+PQ^2=DP^2
所以DQ⊥PQ
CQ=√3,PQ=√2,PC=√5
所以CQ^2+PQ^2=CP^2
所以CQ⊥PQ
所以PQ⊥平面DCQ
所以平面PQC⊥平面DCQ
2.
作CF平行于BQ交DP于F
cosα=[PC^2+CF^2-FP^2]/[2CF*PC]
=(5+2-1)/(2√10)
=3/√10
sinα=√10/10
3.
几何体是两个棱锥的和