∵ABCD是正方形,∴AB=BC=CD、∠B=∠C=90°.
∵DF=3CF,∴DF+CF=4CF,∴CD=4CF,∴CF=CD/4=AB/4.
∵BE=CE,∴BE=CE=BC/2=AB/2.
∴CF/BE=(AB/4)/(AB/2)=1/2、 CE/AB=(AB/2)/AB=1/2, ∴CF/BE=CE/AB.
由∠C=∠B、CF/BE=CE/AB,得:△ECF∽△ABE,∴∠CEF=∠BAE.
∵∠B=90°,∴∠BAE+∠AEB=90°,∴∠CEF+∠AEB=90°,∴∠AEF=90°.