求证:sin1+sin2+sin3+.+sinn

1个回答

  • 证明:(1)2sin1(sin1+sin2+sin3+...+sinn)

    =cos0-cos2+cos1-cos3+cos2-cos4+...

    +cos(n-2)-cosn+cos(n-1)-cos(n+1)

    =cos0+cos1-cosn-cos(n+1)

    (2)=>S=sin1+sin2+sin3+...+sinn=[cos0+cos1-cosn-cos(n+1)]/2sin1

    =>S=[1+cos1-(cosn+cos(n+1))]/[2sin(1/2)*cos(1/2)]

    =>S=[2*cos(1/2)*cos(1/2)-2cos(n+1/2)*cos(1/2)]/[2sin(1/2)*cos(1/2)]

    =>S=[cos(1/2)-cos(n+1/2)]/sin(1/2)

    (3)因为-cos(n+1/2)最大为1

    所以[cos(1/2)-cos(n+1/2)]/2sin(1/2)