如图,四边形ABCD的对角线AC,BD互相垂直,EFGH分别是个边中点.求证:四边形EFGH为矩形.

1个回答

  • 假设E在AB的中点,F在BC的中点,G在CD的中点,H在AD的中点,AC⊥BD

    在三角形ABC中,EF是中位线,所以EF∥AC,EF=1/2AC

    同理在三角形ACD中,GH∥AC,GH=1/2AC

    所以EF∥GH,EF=GH ① (是平行四边形)

    同样可以证明HE∥GF,HE=GF

    因为HE∥BD,EF∥AC,BD⊥AC,所以HE⊥EF ② (有一个直角)

    结合①和②证得四边形EFGH为矩形.

    祝你学习愉快,不懂再问哦O(∩_∩)O~