1.f'(x)=-ke^(-kx)[x^2-(1/k)]-e^(-kx)[2x+1]
=-e^(-kx)[kx^2+(k+2)x]
=0
x=0或x=-1-2/k
讨论:0与-1-2/k的大小.
当k-2时,-1-1/k>0则f(x)单增区间为(0,-1-1/k);单减区间为{x-1-1/k}
2.假设存在实数k,使得函数f(x)的极大值等于3e^(-2).则由1得到当k
1.f'(x)=-ke^(-kx)[x^2-(1/k)]-e^(-kx)[2x+1]
=-e^(-kx)[kx^2+(k+2)x]
=0
x=0或x=-1-2/k
讨论:0与-1-2/k的大小.
当k-2时,-1-1/k>0则f(x)单增区间为(0,-1-1/k);单减区间为{x-1-1/k}
2.假设存在实数k,使得函数f(x)的极大值等于3e^(-2).则由1得到当k