证明:
因为a^2=b^2+c^2-2bccosA,
又由题意知,a^2=b^2+bc
所以c^2-2bccosA=bc
则c=b(1+2cosA)
所以由正弦定理c/sinC=b/sinB得
sinB+2cosAsinB=sinC=sin(A+B)=sinAcosB+sinBcosA
则sinB=sinAcosB-sinBcosA=sin(A-B)
又A,B,C都是三角形的内角,
所以B=A-B
即A=2B
证明:
因为a^2=b^2+c^2-2bccosA,
又由题意知,a^2=b^2+bc
所以c^2-2bccosA=bc
则c=b(1+2cosA)
所以由正弦定理c/sinC=b/sinB得
sinB+2cosAsinB=sinC=sin(A+B)=sinAcosB+sinBcosA
则sinB=sinAcosB-sinBcosA=sin(A-B)
又A,B,C都是三角形的内角,
所以B=A-B
即A=2B