(1).∵sinx=4/5且x∈[π/2,π]
∴cosx=-3/5
∴f(x)=2sin(x+兀/6)-2cosx
=√3sinx-cosx
=√3×4/5-(-3/5)
=4√3/5+3/5
(2)∵f(x)=√3sinx-cosx=2sin(x-π/6),(x∈[π/2,π])
∴-1≤f(x)≤2
∴函数f(x)的值域是[-1,2
(3)∵x-π/6=π,即x=7π/6
∴f(x)=2sin(x-π/6)]的对称中心是(7π/6,0)
(1).∵sinx=4/5且x∈[π/2,π]
∴cosx=-3/5
∴f(x)=2sin(x+兀/6)-2cosx
=√3sinx-cosx
=√3×4/5-(-3/5)
=4√3/5+3/5
(2)∵f(x)=√3sinx-cosx=2sin(x-π/6),(x∈[π/2,π])
∴-1≤f(x)≤2
∴函数f(x)的值域是[-1,2
(3)∵x-π/6=π,即x=7π/6
∴f(x)=2sin(x-π/6)]的对称中心是(7π/6,0)