由勾股定理易得a2+b2=c2,则a2=c2-b2=(c+b)(c-b),因为a为质数,所以c+b=a2,c-b=1,两式相减可得a2=2b+1,代入2(a+b+1)即可得证.∵a,b是Rt△ABC的两条直角边,c是斜边,
∴a2+b2=c2,
即a2=c2-b2=(c+b)(c-b),
∵a为质数,
∴c+b=a2,c-b=1,
∴a2=2b+1,
∴2(a+b+1)=a2+2a+1=(a+1)2,
∴2(a+b+1)是完全平方数.
由勾股定理易得a2+b2=c2,则a2=c2-b2=(c+b)(c-b),因为a为质数,所以c+b=a2,c-b=1,两式相减可得a2=2b+1,代入2(a+b+1)即可得证.∵a,b是Rt△ABC的两条直角边,c是斜边,
∴a2+b2=c2,
即a2=c2-b2=(c+b)(c-b),
∵a为质数,
∴c+b=a2,c-b=1,
∴a2=2b+1,
∴2(a+b+1)=a2+2a+1=(a+1)2,
∴2(a+b+1)是完全平方数.