解题思路:a球做匀加速直线运动,结合牛顿第二定律和运动学公式求出运动的时间,b球做平抛运动,结合竖直方向上的运动规律求出运动的时间,从而进行比较.
根据动能定理求出落地的速度大小,从而进行比较.
A、a球受重力和支持力作用,做匀加速直线运动,a=[mgsin30°/m=gsin30°=
1
2g,根据
h
sin30°=
1
2•
1
2gt2,解得t=
8h
g].b球加速度不变,做匀变速曲线运动,运动的时间t′=
2h
g,知a球的运动时间大于b球的运动时间.故A、B错误,C正确.
D、根据动能定理得,对于a球,有:mgh=
1
2mva2,解得va=
2gh.对于b球,有:2mgh=
1
22mvb2−
1
22mv02,解得vb=
v02+2gh.可知落地时速度的不同.故D错误.
本题选不正确的,故选:ABD.
点评:
本题考点: 平抛运动.
考点点评: 解决本题的关键知道小球a、b的运动规律,结合牛顿第二定律、运动学公式、动能定理进行求解.