用试数法,当y=7时,式子大于1994,所以y只能取4,5,6;当y=6,x不能取整数,
设x,y是正整数,y>3,并且x^2+y^4=2[(x-6)^2+(y+1)^2].证明:x^2+y^4=1994
1个回答
相关问题
-
设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(
-
【4】(-2x+3y)(-2x-3y) 【5】(-1/4x-2y)(-1/4x+2y) 【6】x^2+(y-x)(y+x
-
正整数x,y满足x^2=2y^2+1,证明x是奇数,y是偶数
-
1.设A=2x²-3xy+y²-x+2y,B=4x²-6xy+2y²-3x-y,
-
设xy≠0,x^2+y^2=1,如果I1=(x^4+y^4)/(x^6+y^6),I2=(x^4+y^4)/√(x^6+
-
已知x,y为正整数,且2x^2+3x^2=4x^2y^2+1,则x^2+y^2=?
-
设X,Y都是有理数,并且X,Y满足X2+Y+Y√2=17-4√2.求X+Y的值
-
设实数x,y满足x^2+y^2+8x+6y+25=0,求(x^2-4y^2)/(x^2+4xy+4y^2)-x/x+2y
-
设A=2x²-3xy+y²+x-3y ,B=4x²-6xy+2y²+4x-y ,
-
(1)y=x^2-7x=6 (2)y=3x^4+4x^3 (3)y=x^3-x^2-4x+4 (4)y=2x^2-x^4