如图所示,质量m=0.1g的小物块,带有5×10 -4 C的电荷,放在倾角为30°的光滑绝缘斜面上,整个斜面置于B=0.

1个回答

  • 解题思路:

    (1)带电滑块在滑至某一位置时,由于在安培力的作用下,要离开斜面。根据磁场方向结合左手定则可得带电粒子的电性。

    (2)由于斜面光滑,所以小滑块在没有离开斜面之前一直做匀加速直线运动。借助于洛伦兹力公式可求出恰好离开时的速度大小。

    (3)由运动学公式来算出匀加速运动的时间。由位移与时间关系可求出位移大小。

    解:(1)由题意可知:小滑块受到的安培力垂直斜面向上。

    根据左手定则可得:小滑块带负电。

    (2)当物体离开斜面时,弹力为零,

    因此有:

    (3)由于斜面光滑,物体在离开斜面之前一直做匀加速直线运动,

    由牛顿第二定律得:

    mg

    sin

    30

    =

    m

    a

    由匀变速直线运的速度位移公式得:

    v

    2

    =

    2

    ax

    解得:

    x

    =

    1.2

    m

    .

    (1)物体带负电(2)物体离开斜面时的速度为

    (3)斜面至少1.2 m

    <>