(1)首先,向量ON=(CosC/2,-SinC/2)=(Cos-C/2,Sin-C/2),
向量OM=(CosC/2,SinC/2), 均为单位向量
又∵=π/3,
∴向量OM ·向量ON=1*1*Cosπ/3
=CosC/2*Cos-C/2+SinC/2*Sin-C/2=Cos(C/2-(-C/2)
=CosC
又∵C为三角形内角 即 C∈(0,π/2)
∴C=π/3
(2) 由(1)得 C=π/3
∴由余弦定理,c²=a²+b²-2abCosC=a²+b²-ab
又 由题意有c=7/2
∴a²+b²-ab=49/4
又∵S=1/2*abSinC=(根号3)/4*ab
且 已知S=(3根号3)/2
∴ab=6
∴(a+b)²=a²+b²-ab +3* ab
=49/4+3*6
=30.25
又∵a+b>0
∴a+b=5.5