由梅涅劳斯定理得:(AD/CD)×(CB/FB)×(FP/AP)=1,(AE/BE)×(BC/FC)×(FP/AP)=1
∴AD/CD=(AP×FB)/(CB×FP),AE/BF=(FC×AP)/(BC×FP)
∴(AD/CD)+(AE/BE)=(BC×AP)/(BC×FP)=AP/FP
∵MN∥BC
∴AM/MB=AP/PF=(AD/CD)+(AE/BF)
∴(AD/DC)+(AE/EB)与点P没关
由梅涅劳斯定理得:(AD/CD)×(CB/FB)×(FP/AP)=1,(AE/BE)×(BC/FC)×(FP/AP)=1
∴AD/CD=(AP×FB)/(CB×FP),AE/BF=(FC×AP)/(BC×FP)
∴(AD/CD)+(AE/BE)=(BC×AP)/(BC×FP)=AP/FP
∵MN∥BC
∴AM/MB=AP/PF=(AD/CD)+(AE/BF)
∴(AD/DC)+(AE/EB)与点P没关