[U/(r+R)]^2*R=[U√R/(r+R)]^2=[U/(r/√R+√R)]^2
由均值不等式r/√R+√R≥2√r
故[U/(r+R)]^2*R=[U/(r/√R+√R)]^2≤[U/2√r]^2=U^2/(4r)
由不等号成立条件r/√R=√R
即r=R时
[U/(r+R)]^2*R取最大值U^2/(4r)
[U/(r+R)]^2*R=[U√R/(r+R)]^2=[U/(r/√R+√R)]^2
由均值不等式r/√R+√R≥2√r
故[U/(r+R)]^2*R=[U/(r/√R+√R)]^2≤[U/2√r]^2=U^2/(4r)
由不等号成立条件r/√R=√R
即r=R时
[U/(r+R)]^2*R取最大值U^2/(4r)