(1)已知函数f(x)=cos^2x+2sinxcosx-sin^2x.若f(α/2)=3/4,试求sin2α的值(2)

1个回答

  • f(x)=cos^2x+2sinxcosx-sin^2x

    =cos^2x-sin^2x+2sinxcosx

    =cos2x+sin2x

    f(α/2)=cosα+sinα=3/4

    (cosα+sinα)²=(3/4)²

    1+sin2α=9/16

    sin2α=9/16-1=-7/16

    sin2x+tcos2x

    =√(1+t²)sin(2x+φ)

    因为x∈(π/12,π/6]

    所以2x∈(π/6,π/3]

    要使sin2x+tcos2x≥0在区间(π/12,π/6]上恒成立

    必须使sin(2x+φ)在区间(π/12,π/6]上恒成立

    即需要 π/6+φ≥0且π/3+φ≤π

    即 -π/6≤φ≤2π/3

    又cosφ=1/√(1+t²),且cosφ在[-π/6,2π/3]内的值域是[√3/2,1]

    所以有√3/2≤1/√(1+t²)≤1

    解得 0≤t≤√3/3 或者 -√3/3≤t≤0