原式=lim (1/sinx)(cosx/sinx-1/x)
=lim (xcosx-sinx)/[x(sinx)²]
=lim (xcosx-sinx)/x³ ∵sinx~x 当x趋于0时
=lim [x(1-x²/2!)-(x-x³/3!)]/x³ cosx与sinx级数展开保留前两项
=-1/3
原式=lim (1/sinx)(cosx/sinx-1/x)
=lim (xcosx-sinx)/[x(sinx)²]
=lim (xcosx-sinx)/x³ ∵sinx~x 当x趋于0时
=lim [x(1-x²/2!)-(x-x³/3!)]/x³ cosx与sinx级数展开保留前两项
=-1/3