(1)
由题意,W在EF中垂线上,
所以WE=WF
即W到直线x=-1的距离等于W到点F(1,0)的距离.
由抛物线的几何定义可知,
W满足方程:y^2 = 4x
(2)
若直线L'为竖直直线,
即x=2
则P(2, 2√2) Q(2, -2√2)
易知FR=FP+FQ=(2,0)
则R(3,0)
若直线L'不为竖直直线,
则,设L'斜率为k
L':y=kx-2k
联立抛物线解析式,化简得:
k^2 x^2 - 4(k^2 + 1)x + 4k^2 = 0
因为直线L'与抛物线交于两个点,所以k≠0
设P(x1,k(x1-2)) Q(x2,k(x2-2))
所以FP=(x1 - 1, k(x1-2)) FQ=(x2 - 1, k(x2-2))
FR=FP+FQ=(x1+x2 - 2, k(x1+x2 - 4))
所以R(x1+x2 - 1, k(x1+x2 - 4))
由韦达定理:x1+x2 = -b/a = 4 + 1/k^2
代入得:
R(3 + 1/k^2 , k)
即Xr=3 + 1/k^2; Yr=k
Xr - 1/Yr^2 = 3
所以R的轨迹方程为:x - 1/y^2 = 3