如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点,(1)求抛物线的解析式; (2)设抛物线的

2个回答

  • 1,有题目可知y = m(x+3)*(x+1) = m*(x2 +4x+3 ) = ax2+bx+3

    可知,m=1,a = 1,b=4,即y=x2+4x+3

    2,直线od的解析式为y = (1/2)*x;

    设新的抛物线的解析式为y=x2+bx+c,则顶点为(-1/2b,-1/4b)带入则有

    c=1/4b^2-1/4b;

    即y=x2+bx+1/4b^2-1/4b;只有一个公共点,即方程x2+bx+1/4b^2-1/4b = -2x+9只有唯一解,

    则有 x2+(b+2)x+1/4b^2-1/4b-9 =0只有唯一解,即(b+2)^2 -b2+b+36 = 0;=>b=-8;

    即顶点坐标为(-1/2b,-1/4b) = (4,2);

    3,