最小正周期T=2π/ω=2π/3,
——》ω=3,
f(π/12)=Asin(3*π/12+π/4)=2,
——》A=2,
——》f(x)=2sin(3x+π/4),
1、若是f(2/3*a-π/12)=6/5
——》f(2/3*a-π/12)=2sin2a=6/5,
——》sin2a=3/5,cos2a=4/5,
——》sin(2a-π/3)=3/5*1/2-4/5*√3/2=(3-4√3)/10,
2、若是f(2/3*a+π/12)=6/5,
——》f(2/3*a+π/12)=2sin(2a+π/2)=6/5,
——》cos2a=3/5,sin2a=4/5,
——》sin(2a-π/3)=4/5*1/2-3/5*√3/2=(4-3√3)/10.