基本分部积分法:
∫ x³cosx dx
= ∫ x³ dsinx
= x³sinx - 3∫ x²sinx dx
= x³sinx + 3∫ x² dcosx
= x³sinx + 3x²cosx - 6∫ xcosx dx
= x³sinx + 3x²cosx - 6∫ x dsinx
= x³sinx + 3x²cosx - 6xsinx + 6∫ sinx dx
= x³sinx + 3x²cosx - 6xsinx - 6cosx + C
极速积分表法:
设ƒ(x) = x³ 和 g(x) = cosx
左边对ƒ(x)逐次求导数,右边对g(x)逐次求积分.
然后交叉相乘:
ƒ(x) = x³、g¹(x) = cosx ---(+)
ƒ'(x) = 3x²、g²(x) = sinx ---(-)
ƒ''(x) = 6x、g³(x) = - cosx ---(+)
ƒ'''(x) = 6、g⁴(x) = - sinx ---(-)
ƒ⁽⁴⁾(x) = 0、g⁵(x) = cosx ---(+)
==> ∫ x³cosx dx
= (x³)(sinx) - (3x²)(- cosx) + (6x)(- sinx) - (6)(cosx) + C
= x³sinx + 3x²cosx - 6xsinx - 6cosx + C