∫ (x^3cosx)dx

1个回答

  • 基本分部积分法:

    ∫ x³cosx dx

    = ∫ x³ dsinx

    = x³sinx - 3∫ x²sinx dx

    = x³sinx + 3∫ x² dcosx

    = x³sinx + 3x²cosx - 6∫ xcosx dx

    = x³sinx + 3x²cosx - 6∫ x dsinx

    = x³sinx + 3x²cosx - 6xsinx + 6∫ sinx dx

    = x³sinx + 3x²cosx - 6xsinx - 6cosx + C

    极速积分表法:

    设ƒ(x) = x³ 和 g(x) = cosx

    左边对ƒ(x)逐次求导数,右边对g(x)逐次求积分.

    然后交叉相乘:

    ƒ(x) = x³、g¹(x) = cosx ---(+)

    ƒ'(x) = 3x²、g²(x) = sinx ---(-)

    ƒ''(x) = 6x、g³(x) = - cosx ---(+)

    ƒ'''(x) = 6、g⁴(x) = - sinx ---(-)

    ƒ⁽⁴⁾(x) = 0、g⁵(x) = cosx ---(+)

    ==> ∫ x³cosx dx

    = (x³)(sinx) - (3x²)(- cosx) + (6x)(- sinx) - (6)(cosx) + C

    = x³sinx + 3x²cosx - 6xsinx - 6cosx + C