(1)f(-x)=(a*2^(-x) -1-a)/(2^(-x) -1)=(a-2^x-a*2^x)/(1-2^x)= [(1+a)2^x-a]/(2^x-1)
∵函数f(x)=(a*2^x -1-a)/(2^x -1)为奇函数,f(-x)=-f(x)
∴a=-(a+1)==>a=-1/2
(2) f(x)=(-1/2*2^x -1/2)/(2^x -1)= (-1/2)*(2^x+1)/(2^x -1)
其定义域为:2^x≠1==>x≠0
(3) f’(x)= (-1/2)[2^x*ln2[(2^x -1)- (2^x +1)]/(2^x -1)^2] =(2^x*ln2)/(2^x -1)^2>0
∴函数f(x)在定义域内单调增
即当x∈(-∞,0)时,函数f(x)单调增;当x∈(0,+∞)时,函数f(x)单调增;