已知双曲线C:x2/a2-y2/b2=1(a>0,b>0)离心率为√3,顶点到渐近线的距离为√6/3 一求双曲

1个回答

  • 顶点是(a,0),渐进线方程是bx+ay=0

    故有|ab|/根号(b^2+a^2)=ab/c=根号6/3

    又e=c/a=根号3

    故b=根号6/3*根号3=根号2

    c^2=a^2+b^2

    3a^2=a^2+2

    a^2=1

    故方程是x^2-y^2/2=1.

    x^2+y^2=2上动点P(x0,y0)(x0y0≠0)处的切线方程为

    x0x+y0y = 2

    (2)

    设A,B,的坐标为(Xa,Ya),(Xb,Yb),

    则(Xa,Ya),(Xb,Yb) 为方程组

    x0x+y0y = 2 (1)

    2x^2-y^2 = 2 (2)

    的解

    (1) 代入(2)消去y,得到

    (2-x0^2/y0^2)/x^2 +4x0x/y0^2 - (4/y0^2+2) = 0

    XaXb = - (4/y0^2+2)/(2-x0^2/y0^2) = -(4+2y0^2)/(2y0^2-x0^2)

    (1) 代入(2)消去x,得到

    (2y0^2-x0^2)y^2 -8y0y + 8-2x0^2 = 0

    YaYb = (8-2x0^2)/(2y0^2-x0^2)

    XaXb+YaYb

    = -(4+2y0^2)/(2y0^2-x0^2) + (8-2x0^2)/(2y0^2-x0^2)

    = [4-2(x0^2+y0^2)]/(2y0^2-x0^2)

    (x0,y0) 是圆x^2+y^2=2的点,上式分子为0,

    XaXb+YaYb = 0

    向量OA和OB垂直,∠AOB = 90度